头像
赵璇
副教授
best365网页版登录官方网站
系统科学系
电话:
02552090590
邮箱:
xuanzhao11@seu.edu.cn
地址:
李文正图书馆5楼数学系501-5
邮编:
211189
  • 赵璇,副教授,博士生导师,best365网页版登录官方网站外事秘书/本科生国际交流秘书,江苏省网络群体智能重点实验室管委会成员。2014年获东南大学理学博士学位,东南大学与布朗大学联合培养博士,布朗大学、北京计算科学研究中心博士后。先后多次访问布朗大学应用数学系、中国科学院数学与系统科学研究院计算数学与科学工程计算研究所、澳大利亚昆士兰科技大学、意大利Bologna大学等国内外院所。主持国家自然科学基金1项、江苏省自然科学基金1项、东南大学高校基本科研业务费高水平论文项目1项,参与多项省部级重点项目。已在国际知名SCI期刊《SIAM J. Numerical Analysis》、《SIAM Journal on Scientific Comput.》、《J. Comput. Physics》、《J. Scientific Comput.》、《Sci. China Math.》等发表40余篇论文,总引用1600余次,SCI H指数为18。 2016年分数阶微分和应用国际会议上获Riemann-Liouville Award;Best FDA Paper; 获2015 年东南大学优秀博士学位论文;被国际优秀SCI期刊Applied Mathematical Modelling 和Journal of Computational Physics 分别评为优秀审稿人,2019年12月入选东南大学至善青年学者。
    2016年至今担任全国研究生数模竞赛指导老师以及评委; 承担研究生:数值分析;本科生:高等数学(A)、几何与代数(B)和线性代数(B)等课程教学任务;在2017年获得东南大学首开课优秀奖以及东南大学授课竞赛三等奖; 2016年通过英文文化教育协会、英国总领事馆文化教育处和东南大学联合举办的以英文为媒介的教学培训。
    研究领域:微分方程的高效快速算法设计;机器学习方法的应用和优化(电力系统等);欢迎报考研究生,将为优秀的学生设置定向的培养方案(工作或者国内外深造),期待您的参与:请联系: xuanzhao11@seu.edu.cn

  • 图书章节:


    [1] Xuan Zhao, and Zhi-zhong Sun, Part 1. Time-fractional derivatives, in Handbook of Fractional Calculus with Applications Volume 3: Numerical Methods edited by Jose Antonio Tenreiro Machado, pp. 34-59, De Gruyter, 2019.



    期刊论文:


    [42] Yixian Zhang,Zhuoxuan Li,Yiding Cao, Xuan Zhao*,Jinde Cao,Deep Reinforcement Learning Using Optimized Monte Carlo Tree Search in EWN, IEEE Transactions on Games , 2023, online


    [41] Bingqing Hu, Wei Zhang, Xuan Zhao*, Convergence analysis of the maximum principle preserving BDF2 scheme with variable time-steps for the space fractional Allen-Cahn equation, Journal of Computational and Applied Mathematics, 448 (2024), 115951. 

     

    [40] Zhongqin Xue, Shuying Zhai, Xuan Zhao*, Energy dissipation and evolutions of the nonlocal Cahn-Hilliard model and space fractional variants using efficient variable-step BDF2 method, Journal of Computational Physics, 510 (2024), 113071.

     

    [39] Honglin Liao, Nan Liu, Xuan Zhao*, Asymptotically compatible energy of variable-step fractional BDF2 scheme for the time-fractional Cahn-Hilliard model, IMA Journal of Numerical Analysis, 2024, https://doi.org/10.1093/imanum/drae034

     

    [38] Bingquan Ji, Xuan Zhao*, Mesh-robust L2 norm convergence of variable-step linear BDF2 scheme for the incompressible Navier-Stokes equations, Numerical Algorithms, 2024, https://doi.org/10.1007/s11075-024-01858-0

     

    [37] Xuan Zhao*, Haifeng Zhang, Ren-jun Qi, Stability and convergence of BDF2-ADI schemes with variable step sizes for parabolic equation, Applied Numerical Mathematics, 2024, Online.

     

    [36] Zhongqin Xue, Guanghui Wen, Zhimin Zhang, Xuan Zhao*, Efficient high-order backward difference formulae for Cahn-Hilliard equation with the gradient flow in $H^{-\alpha}$, Communications in Computational Physics, 35, 2024, 1263-1286.

     

    [35] Xuan Zhao*, Zhuhan Jiang, Hong Sun, Energy dissipation law of the variable time-step fractional BDF2 scheme for the time fractional molecular beam epitaxial model, International Journal of Computer Mathematics, 2024, https://doi.org/10.1080/00207160.2024.2315131


    [34] Zhongqin Xue, Xuan Zhao*, Efficient variable steps BDF2 scheme for the two-dimensional space fractional Cahn-Hilliard model, Communications on Applied Mathematics and Computation, 2024, Online.

     

    [33] Ren-jun Qi,Xuan Zhao*,A unified design of energy stable schemes with variable steps for fractional gradient flows and nonlinear integro-differential equations, SIAM Journal on Scientific Computing , 46 (2024), A130-A155.


    [32Zonghan Li, Yangbo Wei, Yixian Zhang, Xuan Zhao*, Jinde Cao, Jianhua Guo, Adaptive data processing framework for efficient short-term traffic flow prediction, Nonlinear Dynamics, (2024) 15231-15249.


    [31Xuan Zhao*, Ran Yang, Ren-jun Qi, Hong Sun, Energy stability and convergence of variable-step L1 scheme for the time fractional Swift-Hohenberg model, Fractional Calculus and Applied Analysis, 27 (2024), 82-101.

     

    [30] Ren-jun Qi, Wei Zhang, Xuan Zhao*, Variable-step numerical schemes and energy dissipation laws for time fractional Cahn-Hilliard model, Applied Mathematics Letters, 149 (2024), 108929.


    [29] Xuan Zhao, Haifeng Zhang, Hong Sun, Errors of an implicit variable-step BDF2 method for a molecular beam epitaxial model with slope selection, East Asian Journal on Applied Mathematics, 13 (2023), 886-913.


    [28] Juan Li, Hong Sun, Xuan Zhao*, Energy stable and convergent BDF3-5 schemes for the molecular beam epitaxial model with slope selection, International Journal of Computer Mathematics, 100 (2023), 1646-1665.

     

    [27] Hong Sun, Yanping Chen, Xuan Zhao, Error estimate of the nonuniform L1 type formula for the time fractional diffusion-wave equation, Communications in Mathematical Sciences, 21 (2023), 1707-1725.



    [26]  Zhongqin Xue, Xuan Zhao*, Compatible energy dissipation of the variable-step L1 scheme for the space-time fractional Cahn-Hilliard equation, SIAM Journal on Scientific Computing , 44 (2023), A2539-A2560.

     

    [25]  Yiheng Wei, Yuquan Chen, Xuan Zhao, Jinde Cao, Analysis and synthesis of gradient algorithms based on fractional-order system theory, IEEE Transactions on Systems Man Cybernetics-Systems, 53 (2023), 1895-1906.


    [24Xuan Zhao*, Zhenhai Wu, Jingyi Qiu, Yiheng Wei, A novel hybrid algorithm with static and dynamic models for air quality index forecasting, Nonlinear Dynamics, 111 (2023), 13187-13199.

     

    [23] Hong Sun, Xuan Zhao*, Haiyan Cao, Ran Yang, Ming Zhang, Stability and convergence analysis of adaptive BDF2 scheme for the Swift-Hohenberg equation, Communications in Nonlinear Science and Numerical Simulation, 111 (2022), 106412.


    [22胡健雄, 汤奕, 李峰, 王琦, 赵璇, 电力系统中数据-物理融合模型的并联模式性能分析, 电力系统自动化, 46 (2021), 15-24.


    [21] 邱敬怡,赵璇*,基于 SVR-BP 算法的江苏省空气质量指数预测,南通大学学报(自然科学版)2020 19(1): 42-47. 


    [20] Xuan Zhao, Meichen Song, Anqi Liu, Yiming Wang, Tong Wang, Jinde CaoData-driven temporal-spatial model for the prediction of AQI in Nanjing, Journal of Artificial Intelligence and Soft Computing Research, 10 (2020) 255-270.


    [19]Shuying Zhai, Dongling Wang, Zhifeng Weng,  Xuan Zhao*, Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schrodinger equation,Journal on Scientific Computing81 (2019) 965-989. 

      

    [18] Chengdai Huang, Xuan Zhao, Xuehai Wang, Zhengxin Wang, Min Xiao, Jinde Cao, Disparate delays-induced bifurcations in a fractional-order neural network, Journal of the Franklin Institute 356 (2019) 2825–2846. 

      

    [17] Chengdai Huang, Xiaobing Nie, Xuan Zhao, Qiankun Song, Zhengwen Tu, Min Xiao, Jinde Cao, Novel bifurcation results for a delayed fractional-order quaternion-valued neural network, Neural Networks 117 (2019) 67–93. 

      

    [16] Hong Sun, Xuan Zhao, Zhi-zhong Sun, The temproal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation,Journal on Scientific Computing, (2019) 78:467–498. 

      

    [15] Beichuan Deng, Zhimin Zhang, Xuan ZhaoSuperconvergence points for the spectral interpolation of Riesz fractional derivatives,Journal on Scientific Computing,81 (2019) 1577-1601.

      

    [14]  Yue Zhao, Weiping Bu, Xuan ZhaoYifa Tang, Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation,Journal of Computational Physics350 (2017), 117-135.

      

    [13] Xiaoshuai Ding, Jinde Cao, Xuan Zhao, and Fuad E. Alsaadi, Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes, Proc. R. Soc. A 473: 20170322. 

      

    [12] Xiaoshuai Ding, Jinde Cao,  Xuan Zhao,  Fuad E. Alsaadi, Finite-time stability of fractional-order complex-valued Neural Networks with time delays, Neural Process Lett (2017) 46:561–580. 

      

    [11] Xuan Zhao*, Xiaozhe Hu, Wei Cai, George E. Karniadakis, Adaptive Finite element method for fractional differential equations using Hierarchical matrices,Comput. Methods Appl. Mech. Engrg325 (2017) 56–76 .

      

    [10] Xuan Zhao, Zhimin Zhang, Superconvergence points of fractional spectral interpolation, SIAM Journal on Scientific Computing, 38 (2016) A598-A614.

      

    [9] Xuan Zhao*, Zhi-zhong Sun, George Em Karniadakis, Second order approximations for variable order fractional derivatives: Algorithms and applications, Journal of Computational Physics, 293 (2015) 184–200.

      

    [8] Xuan Zhao, Zhi-zhong Sun, Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, Journal of Scientific Computing, 62 (2015) 747-771.

      

    [7] Xuan Zhao*, Zhi-zhong Sun, Zhao-peng Hao, A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrödinger equation, SIAM Journal on Scientific Computing, 36-6 (2014), pp. A2865-A2886.(ESI高被引论文)

      

    [6] Haiyan Cao, Zhi-zhong Sun, Xuan Zhao, A second-order three-level difference scheme for a Magneto-Thermo-Elasticity Model, Adv. Appl. Math. Mech., 6 (2014), 281-298. 

      

    [5] Jin-cheng Ren, Zhi-zhong Sun, Xuan Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 232 (2013), 456-467. 

      

    [4] Xuan Zhao*, Qinwu Xu, Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Applied Mathematical Modelling, 38 (2014) 3848-3859. 

      

    [3] Juan Li, Zhi-zhong Sun, Xuan Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci China Math, 55 (2012), 805-826. 

      

    [2]Ya-nan Zhang, Zhi-zhong Sun, Xuan Zhao, Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation, SIAM Journal on Numerical Analysis, 50 ( 2012) , 1535-1555.   (ESI高被引论文)

      

    [1]Xuan Zhao, Zhi-zhong Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 230 (2011), 6061-6074.

      

      

  • 科研项目:


    [9国家自然科学基金委员会,青年项目,11701081,2018-01至2020-12,结题,主持  

    [8江苏省自科学然基金委员会,青年项目,BK20160660,2016-07至2019-06,结题,主持 

    [7东南大学高校基本科研业务费高水平论文项目, (No. 2242016K41029)2016-01至2017-12,结题,主持

    [5国家自然科学基金委员会,地区项目,1186010285,2019-01-至2022-12,结题,参加

    [4国家自然科学基金委员会,重点基金,61833005,2019-01至2023-12,结题,参加

    [3国家自然基金委员会,面上项目,61673111,2017-01至2020-12,结题,参加

    [2OSD/ARO/MURIW911NF-15-1-0562Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications,2015-2020,结题,参加

    [1]  国家自然基金委员会,面上项目,11271068,2013-01至2016-12,结题,参加


    教改项目:

    [1] 校级,2017-cxcy-020基于SRTP训练成果推动大学生大数据服务创业的研究2017-082019-07.


    研究生指导:

    硕士:

    杨冉   (2019.9-2022.6),毕业去向:中国人寿(北京)

    薛忠琴(2020.9-2023.6),毕业去向:Tufts University 读博,优秀硕士论文

    张海丰(2021.9-),毕业去向:江苏银行

    蒋竹涵(2022.9-)

    胡冰清 (2023.9-)

    黄嘉俊 (2024.9-)


    博士: 齐韧钧 (2022.9-)(省研究生科研创新计划、东南大学博士研究生创新能力提升计划)


    学生项目竞赛指导:

    1. 本科生毕业设计20名,优秀毕设,优秀交叉毕设团队

    2. SRTP:国家级7支队伍、省级1支队伍、校级若干

    3. 全国研究生数模竞赛评委(2017-);研究生数模竞赛校内教练


    荣誉:

    10. 2021年指导泰迪杯数据挖掘挑战赛全国一等奖

    9. 2019东南大学至善青年学者

    8. 2019年江苏省建奖教金

    7. 2018年泰迪杯数据挖掘挑战赛指导全国一等奖、全国二等奖

    6. 2017东南大学青年教师授课竞赛 三等奖

    5.  2017东南大学首开课,优秀奖 (全校2名)

    4. 2016年分数阶微分和应用国际会议,Riemann-Liouville Award 

    3. 2015 年东南大学优秀博士学位论文

    2. 2015 Applied Mathematical Modelling 杂志优秀审稿人 

    1. 2014 Journal of Computational Physics 杂志优秀审稿人 













  • 审稿:


    SIAM Journal on Scientific Computing


    Journal of Computational Physics


    Journal on Scientific Computing


    Mathematics and Computers in Simulation


    Applied Mathematical Modelling 


    Numerical Algorithms


    Journal of Computational Mathematics...